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Abstract
Cancer staging provides a basis for planning dimeanagement, but also allows for

meaningful analysis of cancer outcomes and evaluati cancer care services. Despite this,
stage data in cancer registries is often incompiesecurate or simply not collected. This
article describes a prototype software system (&a8tage Interpretation System, CSIS)
which automatically extracts cancer staging infaramafrom medical reports. The system
uses text classification techniques to train suppector machines (SVM) to extract elements
of stage listed in cancer staging guidelines. Wtrexxessing new reports, CSIS identifies
sentences relevant to the staging decision, ansegulently assigns the most likely stage. The
system was developed using a database of stagiagqudd pathology reports for 710 lung
cancer patients, then validated in an independsrdfsl 79 patients against pathologic stage
assigned by two independent pathologists. CSl&waet overall accuracy of 74% for
tumour (T) staging and 87% for node (N) stagingl amors were observed to mirror

disagreements between human experts.
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I. INTRODUCTION
Cancer stage categorises the size and locatidregirtmary tumour, the extent of lymph

node involvement, and presence or absence of raBtaspread to other body parts. The
clinical management of most cancers according ideece-based guidelines (e.g. [1]) is
dependent upon the stage of disease at diagnodislazumentation of cancer stage at
diagnosis is increasingly being recommended aaralatd of care by national cancer bodies.
International standards for cancer staging have degeloped, such as the TNM (Tumour
Nodes Metastases) standard defined by the AJCC rfidameJoint Committee on Cancer) and

UICC (International Union Against Cancer), summedign Table 1 [2].

T: Primary Tumour X Primary tumour cannot be assessed.
0 No evidence of primary tumour.
is Carcinoma in situ.

1,2,3,4 Increasing size and/or local extent ofpttimary tumour.

N: Regional Lymph Nodes X Regional lymph nodes cannot be assessed.

0 No regional lymph node metastasis.

1,2,3 Increasing involvement of regional lymph esd
M: Distant M etastasis X Distant metastasis cannot be assessed.

0 No distant metastasis.

1 Distant metastasis.

Table 1: Summary of the TNM staging protocol [2].
Apart from the important role played by cancer stggn the clinical management of

individual patients, there is increasing acknowkadgnt that outcomes analysis of cancer
management or intervention programs on a populagjovernance or facility level is
meaningful only if interpreted in the light of thisajor prognostic factor. As the main
population based data repositories, cancer reggstiave moved to incorporate clinically
relevant fields such as cancer stage, in ordenable more accurate and useful outcomes
analysis. Despite these changes, stage dataigtrieg)is still commonly absent or

incomplete. After four years of mandated staga dallection for prostate cancer by the
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Maryland Cancer Registry, data was still missin@ 386 of cases on average, and up to 20%
in some regions [3]. A similar study in the OttaRegional Cancer Centre found missing
staging information in 10% of lymphoma cases, a8fth ®f breast cancer cases [4]. An
earlier study at that centre showed that manddsepk slata collection across all cancer types
led to complete stage data being available for 61%ases on average [5]. Organised stage
data collection as undertaken in these two NortteAcan centres is in contrast to many other
regions. For instance, in 2004 the National Ca@martrol Initiative reported that there was
no ongoing population-based collection of stagimfgrmation in any Australian state or

territory [9].

Even when collected, there is evidence that statgeid often inaccurate. A study of
demographic differences in prostate cancer stagi@pnnecticut found that 23% of cases in
the registry were incorrectly coded [6], either doencomplete medical records or staging
errors. A review of lung cancer stage data inMaastricht Cancer Registry in the
Netherlands found major discrepancies in 12% ambndiscrepancies in 23% of cases [7].
Many of these were due to incorrect applicatiostafing guidelines, as well as data entry
errors. Similarly, a review of stage data in OtiaRegional Cancer Centre found staging
errors occurred in 2-5% and data entry error i3 all cases [5]. There were differences
between registry stage and stage as determineddvaitable clinical information in 31%

of lymphoma and 8% of breast cancer cases [4].

When not obtained directly from clinicians prosmpesdly, it is possible to perform

retrospective staging based on retrieved medicakds. A Nottingham prostate cancer study
which retrospectively assigned stage using casesrsbtowed that stage information regarding
the primary tumour (T stage) could be abstracte®®86 of cases, however only limited

information was available for staging lymph nodd ametastatic involvement (N and M
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stage) [8]. The Western Australian Cancer Regigagibility study of staging from medical
records for 20 cancer types found that, under uarassumptions, stage data could be
collected using current data sources for 7 carygest but was not feasible or required
system change for the others [9]. The same grobpegjuently undertook a project to
retrospectively collect stage data for all coloakctincer cases over a one year period [10].
They were able to fully stage 76% of cases fromlalvi@ data sources (pathology reports,
case notes, hospital registries, etc), and a futh® of cases if M stage was omitted. A
study in which stage data was retrospectively ssmiftom medical reports was used to
monitor cancer outcomes for indigenous Australiarte Northern Territory [11].
Therefore, while staging is a recognised compooéptoviding quality cancer care, data on
stage is often incomplete, inaccurate or not remdrd Furthermore, while it is possible to
retrospectively retrieve data from available meldieports, doing this manually can be time

and labour intensive.

Motivated by these limitations, we developed CSI&r(cer Stage Interpretation System), a
prototype software system to assign cancer stagebgaautomatically extracting relevant
information from free-text medical reports storaclinical information systems. CSIS could
be used by a cancer registry to support colleaimstaging information for those patients not
formally staged by human experts, allowing more pahensive population-level analysis of
outcomes. Alternatively, if deployed at the poihteporting, it has potential to improve the
efficiency and consistency of staging by cliniciavghile the system was developed on lung
cancer data available to us, it could in principdeapplied to stage other cancer types. For an
individual patient, input to the system consistsextual reports describing pathology tests.
The objective is to estimate pathologic stage phapg machine learning text categorisation

techniques [12]. As metastatic lung cancer ismdefias involvement of other organs, it is not
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usually assessable from pathological studies ofuihg, therefore the current system does not

attempt to determine the M stage.

Previous work investigated direct classificatiortled cancer stage using binary SVMs
operating on the concatenated reports of a giveand13], [14], essentially posing the
problem as document-level topic categorisation.[Mile results were promising, there was
a need to improve system performance. Furtherntoeg]irect report-level stage
classification meant it was not possible to detzalsons for the stage classification, which
was desirable to interpret errors and build usestir Traditional topic categorisation models a
document as a collection of words representingrab@u of topics. While this is an
appropriate model for tasks such as news repagoasation, it does not well-fit the current
task. A better model of medical reports is a saqa®f specific statements relating to
different diagnostic factors. With this motivatidhe system proposed in this article instead
determines the stage indirectly, by first determgnihe presence or absence of specific
staging factors using sentence-level classifiditse staging protocol, such as shown in Table
1, is then applied to assign the most advancee stsgpciated with a positive finding. As
well as potentially improving the accuracy of thertual stage assignment, decomposing the

stage in this way declares reasons behind theideclsked to the supporting sentences.

The remainder of this article is organised as do Section Il presents a review of related
work, covering text categorisation and softwarepsupfor cancer staging. Section Il then
gives an overview of the proposed automatic metbhodollecting cancer stage data and
implementation details. Results of a system &aluation are presented in Section IV,
followed by discussion of the major findings in 8@ V. Finally, concluding remarks and

directions for future research are presented iti@ev|.
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[I. BACKGROUND

This paper presents a system to automatically eéxtemncer stage information using text
categorisation techniques. Other researchers rawgously presented automatic cancer
staging algorithms using high-level structured ing@ata coding major diagnostic factors for
cervical, ovarian and prostate cancer [38], [320][[41], [42], [43]. Other than these
automatic methods, software has been developestdgimg with synoptic data entry forms

[44], [45], as well as converting between differstaging protocols [45].

In previous work, we reported a novel approachutomatic staging by direct report-level
classification of the stage from free-text histglogports using SVM’s and a bag-of-words
representation [13],[14]. By using available ftegt reports rather than relying on expert
coding, the approach allowed for broader applidgtiihan previous staging software,
particularly for retrospective data collection amden access to expert knowledge of staging
is limited. A review of the literature on medit¢akt categorisation was presented in [13],
and is summarised here. Traditionally, text catisgtion is the task of determining if a given
document belongs to each of a predefined set efeta[12]. Most recent research has
concentrated on machine learning approaches whimetically build classifiers by
learning the characteristics of each category faoget of pre-classified documents [12], [15].
These most commonly use a bag-of-words documerggeptation and Support Vector
Machine classifiers (SVM’s) [16] [17], although myaother classifiers have been investigated
[18], [19], [20], [12]. Within the medical domaia,number of comparative studies have
demonstrated that SVM’s outperform other classiffpes across a range of medical text

classification tasks (e.qg. [24], [28], [34]).

The system proposed in the present article buitdgrimr work [13],[14] by determining the

presence or absence of specific staging factongwestwo-level sentence classification
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approach. For each factor from the staging gudslisentences are first classified for
relevance and then as either a positive or neghtideng. There has been little prior work in
the text classification literature where the uiiclassification is smaller than the entire
document, however related approaches have beengmofor extractive text summarisation.
Such systems generally include a step where atsobseportant sentences are classified
from a document using various features, such aeses length or location, as well as term
frequencies [46], [47]. A double classificationtinedology, in which sentences are first
classified as containing relevant information ot, mmd then terms of interest are classified
from within these relevant sentences, was propwspi]. In other related work, sentences
from MedLINE abstracts were accurately categoraambrding to four types using a

sentence-level bag-of-words SVM in [48].

1. SYSTEM DESCRIPTION

A Architecture
Figure 1 shows the high level architecture of thegppsed system. The system components

are described in the following subsections. CSI& prototype software system
implementing these components in a command-linéagtion, which inputs a list of
patients with corresponding free-text report fil@sg outputs an XML file with the derived
staging metadata. More specific implementatiomitletsuch as SVM training methods,
follow in Section Ill.B. The system employs a t@xé-processing stage to standardise
report texts, followed by support vector machin€Ng T and N relevance classifiers that
assess the relevance of each report to staging. t8sktences from relevant reports are
then each analysed by a series of SVM- and ruleebalsissifiers corresponding to specific
contributing factors defined in the staging guides. Sentence level classifier results are

post-processed to determine the final T and N stage
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j T Detail Filter + Classifier 1 i

T Relevance | TResults | . FinalT Stage

Classifier Post-processing
: —L{ T Detail Filter + Classifier M f o
) ; T Staging
PatieNt [ | e T T
Reports P— " :
: j N Detail Filter + Classifier 1 i ‘
N Relevance N Results M
Classifier Post-processing |
—L{ N Detail Filter + Classifier P f N
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, N Staging :
Figure 1. Proposed system high level architecture
Step 1 There is no evidence of lymph node metastases
Step 2 There is _PRENEG_ lymph node metastases
Step 3 EO0060550 E0012152 _PRENEG_ E0038425 E0039864
Step4 EO0060550 E0012152 NEG_E0038425 NEG_E0039864

Table 2: Example output of each text pre-processing step. In thiscase, the original 8-word
sentence is mapped into a sequence of 4 input termsfor subsequent classification.

1) Text Pre-processing
The purpose of text pre-processing is to standartis report texts and to decrease

variability by encoding common terms or phraseagisi biomedical dictionary, the
Unified Medical Language System (UMLS) SPECIALIS@&xXicon [50]. The text
pre-processing system in the current system iscbasehat reported in [13], and
consists of four steps: 1) Normalisation, 2) Detecbf negation phrases, 3)
Conversion to UMLS SPECIALIST term codes, and 4yatang relevant terms.

The steps implementing normalisation and conver®ddMLS SPECIALIST term
codes are described in [13]. As in the prior waolnke, NegExalgorithm [31], [32]

was used to detect negation phrases. In therdgwsystem, the list of approximately
1400 terms considered for negation in Step 4 caagdrierms occurring in at least 5
reports in the development data set. Negation phluades inserted in Step 2 are
removed after they have been applied to surrounimgs. Table 2 shows example
output of each step.

2) Report Relevance Classification

Pathology reports for lung cancer often containiffient macroscopic detail to

enable T or N staging. Most reports on small lbimgpsy samples, where the
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emphasis is on microscopic findings, fall into tbédegory. The purpose of
relevance classification is to identify which opatient’s reports are not useful for T
or N staging so they are excluded in subsequeps stieall reports for a patient are
classified as irrelevant to T or N staging, them platient is automatically assigned a
stage of TX or NX, respectively. T and N repotevance classifiers are
implemented using SVMs that classify a bag-of-wosfgesentation of each report.
3) StageDetail Classifiers

The proposed classification strategy (see Figuresé¥ sentence level classifiers
corresponding to specific factors from the stagjnglelines. Examples of factors
influencing a T stage assignment are the maximumedsion of the tumour and
whether it invades the main bronchus or chest Wwalttors that affect a particular N
stage assignment are related to tumour involvewfgparticular anatomical lymph

node groups (e.g. peribronchial, mediastinal, etc).

The system starts with a default stage of T1/N@ thns assumes patients are known
to have lung cancer) and upgrades this to the bigltage associated with any of the
factors classified as positive across all sentefarethat patient. Factors classified as

negative are not explicitly taken into account wlassigning the final stage.

Table 3 lists the sentence level classifiers trerewmplemented along with their
type. All classifiers employ keyword filtering adiest step to eliminate entirely
unrelated sentences (e.g. a sentence must cordameasion in order for it to be
input to the tumour size classifier). Most senetetevel classifiers use a 2-level
SVM approach, in which a first level SVM classifi@sentence as being either

relevant (i.e. supports either a positive or negafinding) or irrelevant to the factor
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in question. A relevant sentence is then classdgdupporting a positive or negative

finding by the second level SVM.

Individual 2-level SVM classifiers were implementied tumour size (TS) as well as
for each type of lymph node involvement (PLN, HLMI N, SCLN — Table 3
defines these classifier short names). For stagictgrs related to invasion of body
sites by the primary tumour, a common “invasiordssifier was implemented. Each
sentence is pre-processed to convert the UMLS SRHEET lexicon term
representation of relevant body parts (e.g. visgdeara, chest wall, etc) to a
common “_BODYPART_” term. A similar transformati@applied to tumour terms
(e.g. mass, lesior»  TUMOUR ) and to terms/phrases implying invasiem(
involves, extends inte> _INVADE ). Each transformed sentence is then input
common 2-level SVM classifier as described abowe.gentences classified as
positive by the 2-level SVM, a rule-based post-pssing step examines the
untransformed version of the sentence to discdweeparticular body part that is

undergoing invasion by the primary tumour.

Due to lack of positive examples in developmenadat, the SEPN (defined in
Table 3) was implemented as a rule-based classii@rsearches for phrases
implying the existence of secondary tumour depasitee same lobe. Similarly, the
NONM searches for blanket statements commonly bgedporting pathologists to
indicate that no lymph nodes are involved by thecea A positive finding from this

classifier overrides the other N stage factor decss

Classifier Short Stage Classifier Type

Name Association
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Max. tumour dimensiog or > 3cm TS T2 2-level SVM
Visceral pleural invasion VP T2 Invasion SVM*
Main bronchus invasion MB T2 Invasion SVM*
Chest wall invasion Ccw T3 Invasion SVM*
Diaphragm invasion DIA T3 Invasion SVM*
Mediastinal pleural invasion MEDP T3 Invasion SVM*
Parietal pericardium invasion PPER T3 Invasion SVM*
Great vessel invasion GV T4 Invasion SVM*
Mediastinum/heart/trachea/oesophagus/ | T41 T4 Invasion SVM*

visceral pericardium invasion

Vertebral body/carina/vagus nerve invasion T42 T4 nvakion SVM*
Separate tumour nodules in same lobe SEPN T4 Kegsph
No nodal involvement NONM NO Key-phrase
Peribronchial lymph node involvement PLN N1 2-leg&M
Hilar lymph node involvement HLN N1 2-level SVM
Mediastinal lymph node involvement MLN N2 2-levelig
Subcarinal lymph node involvement SCLN N2 2-leveNs

Table 3: List of sentencelevel classifiersused in the proposed system (* indicates common 2-level SVM
classifier with post-processing to deter mine factor)

B System Development

1) Development Corpus
To train and validate the system, a corpus of éetiled medical reports with

corresponding pathological staging data was obdiaioowing research ethics
approval. The pathological staging data was obthirem a database [1] collected
over the five year period ending in December 200t corresponding medical
reports were extracted from a pathology informatigstem. A total of 8 cases from
the available data sources had pathological sw@ige8, TX, Tis, or N3. Automatic

classifiers for these stages were therefore noleimented and cases with those
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stages were omitted from the corpus. The developowpus statistics are included

in Table 4.

Data Cases | Stage Breakdown | Reports

T1 204] NX 57

T2 405| NO 432
Pathology reports + pTNM 710 817
T3 52 | N1 149

T4 49 N2 72

Table 4: Key statisticsfor the development data set
Training sets for the report relevance classifierscribed in Section 111.A2) were

derived from the development corpus by annotataahef the reports with a

relevant/irrelevant label for both T and N staging.

A separate training set was derived from the dgareknt corpus for each of the
sentence level factor classifiers described ini@edtl.A3) by splitting all reports
into individual sentences, filtering out irrelevasntences using the keyword filter
for that classifier, and then annotating remairsagtences with one of three labels
(irrelevant, -ve finding, +ve finding). Note thatett classification of NX was not
done as this result was derived from the N repdeiance classifier output.

2) SVM Implementation

The bag-of-words term weights used for text repreg®on with all SVMs
throughout the baseline and proposed systems \aérelated according to the LTC-
weighting scheme [51]. The LTC weighting is comnyamsed in state-of-the-art text
categorisation systems, as it effectively de-emigeascommon terms (occurring
often in many documents), produces normalised weigtross different length
documents, and reduces the impact of large difterem frequency through use of

the logarithm.
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A common training strategy was used with all SVMdxh classifiers. A cross-
validation approach was used to optimise SVM tragrparameters and decision
threshold and to obtain unbiased classifier outpet the entire development
training set. The SVM™ [52] toolkit was used for all SVM training and ties). The
optimal parameters discovered through cross-vatidatere used to train a final
classifier on all training data. Decision thresisolcere selected by cross validation to
equalise sensitivity and specificity. No attempswaade to adjust individual
classifier decision thresholds to optimise the gldband N staging accuracy.

3) Development Results

Unbiased classifier outputs from the report releeaclassifiers and the sentence
level staging factor classifiers described aboveevmerged to obtain final T and N
staging results on the 710-case development sell Btaging, 77.6% correct (95%
Cl = 74.3-80.6) was obtained for classifying the 5 T stages (TX-TB). For N
staging, 81.8% correct (95% CI1=78.8-84.6) was ole@ifor classifying 4 N stages
(NX, NO-N2).

To compare the sentence-level classification Wwithgrevious direct report-level
approach, a multi-class SVM system was used aseliba. This approach directly
classifies T and N stage from a concatenationdnts for each patient, with the
multi-class classification implemented as a hidrgraf binary SVMs, and is fully
described in [14]. As TX and NX classes wereawstsidered in [14] , to allow
direct comparison of results, the baseline systas augmented with the T and N
report relevance classification stage from theantrproposed system. On the same
710-case development set, baseline system perfoewaas 62.8% (95% CI1=59.1-
66.4) and 77.0% (95% CI=73.7-80.1) correct for @ &hstaging respectively. This

was used as the baseline system in the trial evatugeported in Section IV.

! All 95% confidence intervals reported in this @giare calculated using the Wilson procedure.



McCowan Automated Collection of Cancer Stage Data  agePL5 of 30

These development results indicate that accuragyéan improved by
decomposition into sentence-level staging factassifiers, as opposed to the more
conventional document-level approach that diredthgsifies final T and N stages.
IV. STATUSREPORT
To evaluate the reliability of the proposed systartrjial was conducted, as described in the
following sections. Some findings from this tve¢re presented in preliminary form in [54].
A Trial Objectives

1. To study the level of agreement in expert staging decisions. Subjectivity in the stage
decision may arise from inconclusive examinatimasying interpretations of
staging criteria, or ambiguity in the way the rés@re communicated. The first
objective of the trial was to quantify the degréeariability between two
independent human experts.

2. To evaluate the performance of automatic staging decisions. The second purpose of
the trial was to evaluate the performance of theraatic cancer stage assignment,
in comparison to a ‘gold standard’ based on thees@put information. For this
purpose the ‘gold standard’ consisted of stagegaddently assigned in perfect
agreement between two human experts. For the dsescwvhere human experts
disagreed, one expert’s decision was selectechdbra as the gold standard.

3. Toevaluate the reliability of classifying key stage factors. Finally, in addition to
overall T and N stage assignments, we evaluatedwelirthe system classified

specific factors based on key sentences in reléidhe human experts.

B Method

1) Input Data
The trial data set consisted of pathology repantdung cancer cases that were not

seen during the development phase, and was extriota the same pathology

information system as the development data setiridieset consisted of reports for



McCowan Automated Collection of Cancer Stage Data  agePL6 of 30

116 cases that had been assigned a formal patbatagje in the eight month period
subsequent to December 2005, along with 63 unstegses that had a report
describing examination of a lung or lobe from aygpmenectomy or lobectomy
procedure.
2)  Output Data
Two expert pathologists competent in lung cancayisg were presented with the
de-identified reports for the 179 patients. Thesntindependently classified the
TNM stage and specific factors (from Table 3) facle patient, and entered the data
into an electronic form. Form validation requitée pathologists to enter T and N
stages, however default values were set for aéiradlata fields (M stage of “MX”,
and “negative” for all other details). A text baas also provided on the form to
allow any free-text comments to be entered.
In order to determine the ‘gold standard’ TNM sté&gesystem evaluation, following
independent data collection from the pathologstsieeting was convened to discuss
cases where the experts differed in the assigned 3tdge. In this meeting, a
consensus TNM stage was assigned by the expers foany cases as possible. If
consensus was not reached for a case, due to atgbigthe report language or
staging guidelines, the two different TNM stagesenetained.
System output consisted of the T and N stage, alotigthe output of the detail
classifiers from Table 3. To preclude bias, pregesof the trial data was performed
by technicians independent of the development teasstigators, so that
investigators were blind to the trial data set.
3) Performance Measures
The following defines the measures used to evahestdts based on the total Number
of patients (N), along with counts of True Posisi@&P), True Negatives (TN), False

Positives (FP) and False Negatives (FN) resultiomfclassification decisions. To
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evaluate the overall performance of the systenT fand N staging, multi-class
classification performance is measured usingatoeracy,

Acc :E
N

Agreement between human experts was measured kgipe statistic, which takes
account of agreement occurring by chance.

P(A) - P(E)

Kappa =
PP 1-P(E)

where P(A)=Accuracy is the observed agreement, and

P(E) zi Nl,\EC) Ni\](C)

is the agreement expected by chance, wiNgi€) is the number of times

annotator 1 selected classBinary classification performance is measuredgisie
sensitivity andspecificity.

TP TN
S=————— , pec=————
(TP + FN) (TN + FP)

The confusion matrix is a 2-dimensional tabulation of frequency cowttsording to
assigned (test) class labels and actual (gold atdhdlass labels. By highlighting
commonly occurring class confusions, the confusiatrix is a useful tool for

analysing multi-class classification systems.

C Results

1) Expert Agreement
The inter-expert agreement is shown in Table ®ims of the kappa statistic and

raw percentage agreement for T and N staging ondhmplete 179-case trial data
set. The break-down of cases by stage is demoegdtimathe confusion matrix in

Table 6.

Stage | Kappa | % Agreement (95% CI)
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T 0.83 89.9 (84.3-93.8)
N 0.96 97.8 (94.0-99.3)
Table5: Inter-expert agreement for T and N staging.
Expert 2 Expert 2
T1 T2 T3 T4 NX NO N1 N2
TL| 49 0 2 O NX | 16 1 0 O
< T2 1 94 3 2 < NO 0 107 1 2
@ @
g T3/ 0 3 7 2 3 N1 | O 0 3 0
L L
T4 | O 5 0 1.1 N2 | O 0 0 17

Table 6: Confusion matrices comparing T and N stage assigned by Experts 1 and 2.

The confusion matrices show there were 18 T stagetdN stage disagreements
between the experts. In the subsequent meetidgtésmine gold standard stage
data for system evaluation, as described in Set¥d®R), the experts were able to

reach consensus for 10 of the 18 T stage caseallahdf the N stage cases. Two

different T stage assignments were retained ford@heaining 8 cases.

The inter-expert agreement for each of the detailading factors is shown in Table
7. A Kappa value of N/A (Not Applicable) indicates instances found by experts

(division by zero). Numbers for advanced T stagtois were small, so the

significance of results for these factors is netcl

Expert 1 vs Expert 2

Agree Disagree
Stage | Classifier | YY NN | YN NY | Kappa
T TS 96 80 1 2 0.97
VP 63 109 2 5 0.92
MB 0O 173, 6 0 0.00
Cw 5 171 2 1 0.76
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DIA 0 179| O 0 N/A
MEDP 0 176 3 0 0.00

PPER 0 178 O 1 0.00

GV 0 179 O 0 N/A
T41 2 170, 1 6 0.35
T42 0 179 O 0 N/A

SEPN 8 161 5 5 0.59

N NONM 7% 71| 19 13 0.64
PLN 27 146] 6 0 0.88
HLN 23 150| 2 4 0.87
MLN 12 165| 2 0 0.92

SCLN 6 172 1 0 0.92

Table 7: Inter-expert agreement for detailed staging factors (see Table 3 for classifier name definitions).

2)  System Performance
Performance was evaluated against the ‘gold stdhdahuman expert stage

assignments. As described above, the expertsedadnsensus on the T stage in
only 171 cases. N stage consensus was attainedl i6f9 cases. For each of the
remaining 8 cases without T stage consensus, ote @xpert stage decisions was
selected at random as the gold standard. OvemtldIN stage accuracy with respect
to the expert staging for a baseline system tlzaisdies the stage directly from the
concatenated reports for each patient, as desanb®elction 111.B3), as well as for
the proposed CSIS is shown in Table 8. The breakadf cases by stage is

demonstrated in the confusion matrix in Table 9.

Accuracy % (95% CI)

Stage | Cases Baseline Proposed

T | 179 | 62.6 (55.0-69.6) 74.3 (67.1-80}4)

N | 179 | 76.5(69.5-82.4) 86.6 (80.5-91/1)

Table 8: Accuracy of system with respect to expertsfor T and N stage.
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System
T1L T2 T3 T4
T1|39 10 0 1
%) T2| 6 8 2 13
g
X T3 | O 7 2 1
T4 1 5 0 12

Table 9: Confusion matrix comparing T and N stage assigned by Experts and the proposed System?
The performance of CSIS on cases with perfect éxqueeemeritfor each of the

detailed staging factors in terms of sensitivipedficity, accuracy and kappa

statistic is shown in Table 10. Again, the sigrafice of results for advanced T

ageR20 of 30

System

NX NO N1 N2

NX | 10 6 1 0

%) NO 2 105 O 1
@
=3

| N1 0 8 27 1

N2 0 3 2 13

factors is not clear due to low numbers of posidxamples.

2 As there were no gold-standard cases, TX restdtaat reported, however that the system was ssitdés

not inserting any false positive TX cases.

% It was not feasible to resolve disagreements omildd staging factors in the post-trial consensesting.

Expertsvs System
Agree Disagree
Stage | Classifier | YY NN | YN NY | Sens. Spec. Acc. Kappa
T TS 93 67| 3 13| 097 084 091 o381
VP 55 96 8 13| 0.87 0.88 0.88 0.74
MB 0O 1712, O 2 1.00 0.99 0.99 0.0(
Cw 3 170 2 1 0.60 0.99 0.98 0.66
DIA 0 179| O 0| 1.00 1.00 100 N/A
MEDP 0 176 O 0 1.00 1.00 1.00 N/A
PPER 0 178 O 0 1.00 1.00 1.00 N/A
GV 0 178 O 1 1.00 0.99 0.99 0.0(
T41 0 170 2 0 0.00 1.00 0.99 0.00
T42 0O 179 O 0 1.00 1.00 1.00 N/A
SEPN 5 148 3 13 062 092 091 034
N NONM 61 67| 15 4 0.80 0.94 0.87 0.74
PLN 23 141 4 5 0.85 0.97 0.95 0.81
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HLN 20 143| 3 7| 087 095 094 07
MLN 9 162 3 3| 075 098 097 07

SCLN 5 171 1 1 083 099 099 0.8

Table 10: Performance of system for classifying detailed staging factors.

A final point regarding system performance is theurred processing time. For each
report, on a single processor 3 GHz Pentium-4 R&€rdport-level baseline system
required 1.14 seconds, while the sentence-levelqaed system required 1.20
seconds. In both cases, the major component weagxhpre-processing stage which

required approximately 1 second.

V. DISCUSSION
A Trial Objectives.
1. To study the level of agreement in expert staging decisions.
The comparison between the stage assigned by thexperts shows that there is a degree
of subjectivity in determining a patient's T andgfdge based purely on the available
pathology reports, particularly for the T stageisien. Following initial coding, there
were 18 disagreements between Experts 1 and 2g$taging on the full 179 patient set,
and 4 disagreements for N staging. The confusidmicea in Table 6 show that the most
common confusions were between T2 and T3, and @2Z'dn These findings broadly
correspond with agreement levels found in reviefvegistry data [4], [5], [6], [7].
Following discussion between the two experts, cosise was reached on 10 of these T
stages, and all 4 N stages. The 10 original Testigpgreements were attributed to 6
reports with ambiguous language and 4 interpretatroors. The 4 original N stage
disagreements were attributed to 2 data entryriointerpretation error, and 1 report
with ambiguous language. The remaining 8 T stagéstbns on which no consensus
could be reached consisted of 4 cases where thi@gtguidelines are ill-defined for

distinguishing a single primary tumour from muldetl tumours (leading to T2M1 and
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T4MO stage confusion, which are however both GiStgge 1V), and 4 cases where the

report was imprecise regarding tumour extent (leguthh T2/T3 confusion).

2. To evaluate the reliability of automatic staging decisions.

CSIS had T stage accuracy of 74% and N stage agcaf&87% on the trial data. This
represents an improvement of approximately 10% theeprevious baseline system for
both T and N staging. These results are simil#indse observed on the development data
set (Section 111.B3). In general, higher accurbmyN stage as compared with T stage
mirrors the trend observed in the expert disagre¢snand the CSIS confusions

predominantly occurred between the same advanctages as for the human experts.

3. To evaluate the reliability of classifying key stage factors.

The results in Table 10 show that agreement betWw&d8 and the experts for individual
key stage factors also follows the same patterssrobd between human experts in Table
7. The sentence-level factor classifier result§able 10 explain the reasons for CSIS
stage errors. Confusion between T1 and T2 casesgifax in Table 9), is due to both false
positive findings for the Tumour Size (TS) classifiand the imperfect sensitivity and
specificity of the Visceral Pleural Invasion (VRIassifier. Erroneous T3 and T4 stage
classifications are mostly due to the Chest Walasion (CW) and the SEPN (Separate
Tumour Nodules in Same Lobe) classifiers. The fopegformance for those factors is
consistent with both their rarity and the subjattigeen in the corresponding expert
decisions, as shown in Table 7.

Higher accuracy for N stage sentence-level fa@sults are likely to reflect the higher
prevalence of N stage factors than T stage faatdise reports, however there is
substantial agreement between the automatic dkxssénd the experts for all N stage
factors. As seen in the confusion matrix in Téhlenost of the system-level N stage

errors are false positive findings of NO. Thesaulefrom false negative findings from the
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lymph node involvement classifiers (HLN, PLN, MLMN&SLN) coupled with false
positives from the NONM classifier.

B Other Considerationsand Limitations

CSIS has been developed and evaluated for T artdgihg of lung cancer based on
reports from pathological studies of the lung, emopof-concept to determine the
potential accuracy of an automatic system. Theresaveral issues to be addressed for the
system to be generalised to other cancers, omkeps other input modalities before
deployment in practice.

The current system was developed on a specifics#dtand there is a risk that over-fitting
may limit broader application. Using more compMatural Language Processing, richer
medical terminologies (SNOMED CT, MetaMap), as vealllarger and more varied
training data sets may improve the generalisati@hpeortability of classifiers to new
cancers or reporting modalities.

A practical consideration is the expert time reedifor training SVM classifiers during
system development. This involves annotation onfesgces for each staging factor, which
was done manually by the development team in theusystem. It is estimated that the
present lung cancer system involved up to 40 houasnotation work during
development. While this is not negligible, it mosiy be done once for each new cancer
type, and is therefore not a major concern giveantal productivity gains from

automatic stage data collection. Ongoing reseigroivestigating methods for reducing
annotation work in several ways, such as by idgntfreusable classifiers across different
cancers (e.g. tumour dimension, or the common Siora classifier in the present system),
analysing convergence with training set size, asidgiactive learning.

Another practical consideration is the need to matiically discard irrelevant reports. The
report relevance stage in the current system disaaports with no information for T or N

staging, leading to TX or NX classifications. Testem however assumes the input
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reports do relate to lung cancer. This has bekreaed in the development and trial data
sets by filtering on report metadata (e.g. diseaskes, examination type) from the source
databases, however a practical system may requi@@ general report filtering stage.
Much analysis of cancer outcomes is based on tieshievel group stage, rather than the
TNM stage. Because CSIS was developed on pathoggpyts and M staging is usually
determined clinically or by medical imaging, M stagywas omitted and CSIS therefore
cannot output a proper group stage. Some indicatigpotential group stage accuracy can
be given by assuming a known M stage. For all Méesawith expert agreement on group
stage from the trial, the present system attairecanracy of 76.7% across Stages I-1lI
(163 cases, Stage IV could not be assessed agetimed as M1 with any T and N). Future
work will investigate adaptability to using additi@l input sources, e.g. radiology or non-
lung pathology reports, to determine M stage.
VI. CONCLUSIONS
We developed a prototype software system to auioallgtdetermine a patient's cancer stage
from medical reports of lung cancer patients. 3ysiem uses Support Vector Machine
classification techniques to classify a range ¢hidied staging factors at the sentence-level,
and then combines these into a global stage decisi&IS was compared against direct
report-level classification and against stagingvay independent pathology experts. The
following conclusions can be made:
1. There is a significant level of disagreement imgstassigned by independent human
experts based on pathology reports, particulamylfetaging.
2. In comparison with human experts, CSIS achievedadvaccuracy of 74% for T
staging and 87% for N staging.
3. The two-level sentence classification approach awes on previous direct report-
level stage classification by approximately 10%Mdoth T and N staging.

4. The CSIS error pattern mirrors that observed batviee independent experts.
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The level of accuracy required for practical depteyt of such a system would necessarily
depend on the use case, and whether it involvéelpao$ human validation. The results
achieved do however lie within bounds of humanistagccuracy observed in studies of
registry data [4][5][6][7]. A productive avenue i&search may be to improve the sensitivity
of the N stage detail classifiers through more sigated natural language processing
techniques. The limitations with the T stagingtegs mostly reflect uncertainty in the report
language, as well as the fact that the stage pristalo not cater for every contingency for
more advanced cancer cases, thus leading to swbj@derpretations. As well as
investigating new classification strategies to ioya sensitivity of detail classifiers, ongoing

work will focus on addressing these issues for fpralcdeployment of the technology.
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