
McCowan Automated Collection of Cancer Stage Data Page 1 of 30 

 
Title: 

Collection of Cancer Stage Data by Classifying Free-text Medical Reports 

 

Authors and Affiliations: 

1Iain A. McCowan (PhD), 1Darren C. Moore (MEng), 1Anthony Nguyen (PhD), 2Rayleen V. 

Bowman (PhD, FRACP), 3Belinda E. Clarke (PhD, FRCPA), 3Edwina E Duhig (FRCPA), 

4Mary-Jane Fry. 

1CSIRO e-Health Research Centre, Brisbane, Australia. 

2Department of Medicine, University of Queensland, Brisbane, Australia. 

3Department of Anatomical Pathology, The Prince Charles Hospital, Brisbane, Australia. 

4Queensland Cancer Control Analysis Team, Queensland Health, Brisbane, Australia. 

 

Corresponding Author (for all communications, including reprints requests): 

Iain McCowan 

e-Health Research Centre 

PO Box 1084 Adelaide Street 

Brisbane QLD 4000 

AUSTRALIA 

Tel:  +61 7 3024 1626 

Fax: +61 7 3024 1690 

Email: iain.mccowan@csiro.au 

 



McCowan Automated Collection of Cancer Stage Data Page 2 of 30 

Abstract 
Cancer staging provides a basis for planning clinical management, but also allows for 

meaningful analysis of cancer outcomes and evaluation of cancer care services.  Despite this, 

stage data in cancer registries is often incomplete, inaccurate or simply not collected.   This 

article describes a prototype software system (Cancer Stage Interpretation System, CSIS) 

which automatically extracts cancer staging information from medical reports.  The system 

uses text classification techniques to train support vector machines (SVM) to extract elements 

of stage listed in cancer staging guidelines.  When processing new reports, CSIS identifies 

sentences relevant to the staging decision, and subsequently assigns the most likely stage. The 

system was developed using a database of staging data and pathology reports for 710 lung 

cancer patients, then validated in an independent set of 179 patients against pathologic stage 

assigned by two independent pathologists.  CSIS achieved overall accuracy of 74% for 

tumour (T) staging and 87% for node (N) staging, and errors were observed to mirror 

disagreements between human experts.   
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I. INTRODUCTION 
Cancer stage categorises the size and location of the primary tumour, the extent of lymph 

node involvement, and presence or absence of metastatic spread to other body parts.  The 

clinical management of most cancers according to evidence-based guidelines (e.g. [1]) is 

dependent upon the stage of disease at diagnosis, and documentation of cancer stage at 

diagnosis is increasingly being recommended as a standard of care by national cancer bodies.   

International standards for cancer staging have been developed, such as the TNM (Tumour 

Nodes Metastases) standard defined by the AJCC (American Joint Committee on Cancer) and 

UICC (International Union Against Cancer), summarised in Table 1 [2].   

T: Primary Tumour X Primary tumour cannot be assessed. 

 0 No evidence of primary tumour. 

 is Carcinoma in situ. 

 1,2,3,4 Increasing size and/or local extent of the primary tumour. 

N: Regional Lymph Nodes X Regional lymph nodes cannot be assessed. 

 0 No regional lymph node metastasis. 

 1,2,3 Increasing involvement of regional lymph nodes. 

M: Distant Metastasis X Distant metastasis cannot be assessed. 

 0 No distant metastasis. 

 1 Distant metastasis. 

Table 1: Summary of the TNM staging protocol [2]. 

Apart from the important role played by cancer staging in the clinical management of 

individual patients, there is increasing acknowledgement that outcomes analysis of cancer 

management or intervention programs on a population, governance or facility level is 

meaningful only if interpreted in the light of this major prognostic factor.   As the main 

population based data repositories, cancer registries have moved to incorporate clinically 

relevant fields such as cancer stage, in order to enable more accurate and useful outcomes 

analysis.  Despite these changes, stage data in registries is still commonly absent or 

incomplete.   After four years of mandated stage data collection for prostate cancer by the 
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Maryland Cancer Registry, data was still missing in 13% of cases on average, and up to 20% 

in some regions [3].  A similar study in the Ottawa Regional Cancer Centre found missing 

staging information in 10% of lymphoma cases, and 38% of breast cancer cases [4].  An 

earlier study at that centre showed that mandated stage data collection across all cancer types 

led to complete stage data being available for 71% of cases on average [5].  Organised stage 

data collection as undertaken in these two North American centres is in contrast to many other 

regions.  For instance, in 2004 the National Cancer Control Initiative reported that there was 

no ongoing population-based collection of staging information in any Australian state or 

territory [9]. 

 

Even when collected, there is evidence that stage data is often inaccurate.  A study of 

demographic differences in prostate cancer staging in Connecticut found that 23% of cases in 

the registry were incorrectly coded [6], either due to incomplete medical records or staging 

errors.  A review of lung cancer stage data in the Maastricht Cancer Registry in the 

Netherlands found major discrepancies in 12% and minor discrepancies in 23% of cases [7].  

Many of these were due to incorrect application of staging guidelines, as well as data entry 

errors.  Similarly, a review of stage data in Ottawa Regional Cancer Centre found staging 

errors occurred in 2-5% and data entry error in 3-6% of all cases [5].  There were differences 

between registry stage and stage as determined from available clinical information in 31% 

of lymphoma and 8% of breast cancer cases [4]. 

 

When not obtained directly from clinicians prospectively, it is possible to perform 

retrospective staging based on retrieved medical records.  A Nottingham prostate cancer study 

which retrospectively assigned stage using case notes showed that stage information regarding 

the primary tumour (T stage) could be abstracted for 96% of cases, however only limited 

information was available for staging lymph node and metastatic involvement (N and M 
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stage) [8].  The Western Australian Cancer Registry feasibility study of staging from medical 

records for 20 cancer types found that, under various assumptions, stage data could be 

collected using current data sources for 7 cancer types, but was not feasible or required 

system change for the others [9].  The same group subsequently undertook a project to 

retrospectively collect stage data for all colorectal cancer cases over a one year period [10]. 

They were able to fully stage 76% of cases from available data sources (pathology reports, 

case notes, hospital registries, etc), and a further 22% of cases if M stage was omitted. A 

study in which stage data was retrospectively sourced from medical reports was used to 

monitor cancer outcomes for indigenous Australians in the Northern Territory [11].   

Therefore, while staging is a recognised component of providing quality cancer care, data on 

stage is often incomplete, inaccurate or not recorded.   Furthermore, while it is possible to 

retrospectively retrieve data from available medical reports, doing this manually can be time 

and labour intensive.    

 

Motivated by these limitations, we developed CSIS (Cancer Stage Interpretation System), a 

prototype software system to assign cancer stage data by automatically extracting relevant 

information from free-text medical reports stored in clinical information systems.  CSIS could 

be used by a cancer registry to support collection of staging information for those patients not 

formally staged by human experts, allowing more comprehensive population-level analysis of 

outcomes. Alternatively, if deployed at the point of reporting, it has potential to improve the 

efficiency and consistency of staging by clinicians.  While the system was developed on lung 

cancer data available to us, it could in principle be applied to stage other cancer types.  For an 

individual patient, input to the system consists of textual reports describing pathology tests. 

The objective is to estimate pathologic stage by applying machine learning text categorisation 

techniques [12].  As metastatic lung cancer is defined as involvement of other organs, it is not 
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usually assessable from pathological studies of the lung, therefore the current system does not 

attempt to determine the M stage. 

 

Previous work investigated direct classification of the cancer stage using binary SVMs 

operating on the concatenated reports of a given patient [13], [14], essentially posing the 

problem as document-level topic categorisation [12].  While results were promising, there was 

a need to improve system performance.  Furthermore, the direct report-level stage 

classification meant it was not possible to detail reasons for the stage classification, which 

was desirable to interpret errors and build user trust.  Traditional topic categorisation models a 

document as a collection of words representing a number of topics.  While this is an 

appropriate model for tasks such as news report categorisation, it does not well-fit the current 

task.  A better model of medical reports is a sequence of specific statements relating to 

different diagnostic factors.  With this motivation, the system proposed in this article instead 

determines the stage indirectly, by first determining the presence or absence of specific 

staging factors using sentence-level classifiers.  The staging protocol, such as shown in Table 

1, is then applied to assign the most advanced stage associated with a positive finding.  As 

well as potentially improving the accuracy of the eventual stage assignment, decomposing the 

stage in this way declares reasons behind the decision, linked to the supporting sentences.   

 

The remainder of this article is organised as follows.  Section II presents a review of related 

work, covering text categorisation and software support for cancer staging.  Section III then 

gives an overview of the proposed automatic method for collecting cancer stage data and 

implementation details.  Results of a system trial evaluation are presented in Section IV, 

followed by discussion of the major findings in Section V.  Finally, concluding remarks and 

directions for future research are presented in Section VI. 
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II. BACKGROUND 
 
This paper presents a system to automatically extract cancer stage information using text 

categorisation techniques.  Other researchers have previously presented automatic cancer 

staging algorithms using high-level structured input data coding major diagnostic factors for 

cervical, ovarian and prostate cancer [38], [39], [40], [41], [42], [43].  Other than these 

automatic methods, software has been developed for staging with synoptic data entry forms 

[44], [45], as well as converting between different staging protocols [45].   

 

In previous work, we reported a novel approach to automatic staging by direct report-level 

classification of the stage from free-text histology reports using SVM’s and a bag-of-words 

representation [13],[14].   By using available free-text reports rather than relying on expert 

coding, the approach allowed for broader applicability than previous staging software, 

particularly for retrospective data collection and when access to expert knowledge of staging 

is limited.   A review of the literature on medical text categorisation was presented in [13], 

and is summarised here.  Traditionally, text categorisation is the task of determining if a given 

document belongs to each of a predefined set of classes [12].  Most recent research has 

concentrated on machine learning approaches which automatically build classifiers by 

learning the characteristics of each category from a set of pre-classified documents [12], [15].  

These most commonly use a bag-of-words document representation and Support Vector 

Machine classifiers (SVM’s) [16] [17], although many other classifiers have been investigated 

[18], [19], [20], [12].  Within the medical domain, a number of comparative studies have 

demonstrated that SVM’s outperform other classifier types across a range of medical text 

classification tasks (e.g. [24], [28], [34]). 

 

The system proposed in the present article builds on prior work [13],[14] by determining the 

presence or absence of specific staging factors using a two-level sentence classification 
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approach.  For each factor from the staging guidelines, sentences are first classified for 

relevance and then as either a positive or negative finding. There has been little prior work in 

the text classification literature where the unit of classification is smaller than the entire 

document, however related approaches have been proposed for extractive text summarisation.  

Such systems generally include a step where a subset of important sentences are classified 

from a document using various features, such as sentence length or location, as well as term 

frequencies [46], [47].  A double classification methodology, in which sentences are first 

classified as containing relevant information or not, and then terms of interest are classified 

from within these relevant sentences, was proposed in [49].  In other related work, sentences 

from MedLINE abstracts were accurately categorised according to four types using a 

sentence-level bag-of-words SVM in [48].    

III. SYSTEM DESCRIPTION 

A Architecture 
Figure 1 shows the high level architecture of the proposed system. The system components 

are described in the following subsections.  CSIS is a prototype software system 

implementing these components in a command-line application, which inputs a list of 

patients with corresponding free-text report files, and outputs an XML file with the derived 

staging metadata.  More specific implementation details, such as SVM training methods, 

follow in Section III.B.  The system employs a text pre-processing stage to standardise 

report texts, followed by support vector machine (SVM) T and N relevance classifiers that 

assess the relevance of each report to staging tasks. Sentences from relevant reports are 

then each analysed by a series of SVM- and rule-based classifiers corresponding to specific 

contributing factors defined in the staging guidelines. Sentence level classifier results are 

post-processed to determine the final T and N stage.    
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Figure 1: Proposed system high level architecture 

 
Step 1 There is no evidence of lymph node metastases 
Step 2 There is _PRENEG_ lymph node metastases 
Step 3 E0060550 E0012152 _PRENEG_ E0038425 E0039864 
Step 4 E0060550 E0012152  NEG_E0038425 NEG_E0039864 

Table 2: Example output of each text pre-processing step.  In this case, the original 8-word 
sentence is mapped into a sequence of 4 input terms for subsequent classification. 

1) Text Pre-processing 
The purpose of text pre-processing is to standardise the report texts and to decrease 

variability by encoding common terms or phrases using a biomedical dictionary, the 

Unified Medical Language System (UMLS) SPECIALIST Lexicon [50].  The text 

pre-processing system in the current system is based on that reported in [13], and 

consists of four steps: 1) Normalisation, 2) Detection of negation phrases, 3) 

Conversion to UMLS SPECIALIST term codes, and 4) Negating relevant terms.  

The steps implementing normalisation and conversion to UMLS SPECIALIST term 

codes are described in [13].  As in the prior work, the NegEx algorithm [31], [32] 

was used to detect negation phrases.   In the current system, the list of approximately 

1400 terms considered for negation in Step 4 comprised terms occurring in at least 5 

reports in the development data set. Negation phrase codes inserted in Step 2 are 

removed after they have been applied to surrounding terms.  Table 2 shows example 

output of each step.    

2) Report Relevance Classification 
Pathology reports for lung cancer often contain insufficient macroscopic detail to 

enable T or N staging.  Most reports on small lung biopsy samples, where the 
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emphasis is on microscopic findings, fall into this category.  The purpose of 

relevance classification is to identify which of a patient’s reports are not useful for T 

or N staging so they are excluded in subsequent steps. If all reports for a patient are 

classified as irrelevant to T or N staging, then the patient is automatically assigned a 

stage of TX or NX, respectively.  T and N report relevance classifiers are 

implemented using SVMs that classify a bag-of-words representation of each report.  

3) Stage Detail Classifiers 
The proposed classification strategy (see Figure 1) uses sentence level classifiers 

corresponding to specific factors from the staging guidelines. Examples of factors 

influencing a T stage assignment are the maximum dimension of the tumour and 

whether it invades the main bronchus or chest wall. Factors that affect a particular N 

stage assignment are related to tumour involvement of particular anatomical lymph 

node groups (e.g. peribronchial, mediastinal, etc).   

 

The system starts with a default stage of T1/N0 (and thus assumes patients are known 

to have lung cancer) and upgrades this to the highest stage associated with any of the 

factors classified as positive across all sentences for that patient. Factors classified as 

negative are not explicitly taken into account when assigning the final stage. 

 

Table 3 lists the sentence level classifiers that were implemented along with their 

type. All classifiers employ keyword filtering as a first step to eliminate entirely 

unrelated sentences (e.g. a sentence must contain a dimension in order for it to be 

input to the tumour size classifier).  Most sentence-level classifiers use a 2-level 

SVM approach, in which a first level SVM classifies a sentence as being either 

relevant (i.e. supports either a positive or negative finding) or irrelevant to the factor 
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in question. A relevant sentence is then classified as supporting a positive or negative 

finding by the second level SVM. 

 

Individual 2-level SVM classifiers were implemented for tumour size (TS) as well as 

for each type of lymph node involvement (PLN, HLN, MLN, SCLN – Table 3 

defines these classifier short names).  For staging factors related to invasion of body 

sites by the primary tumour, a common “invasion” classifier was implemented.  Each 

sentence is pre-processed to convert the UMLS SPECIALIST lexicon term 

representation of relevant body parts (e.g. visceral pleura, chest wall, etc) to a 

common “_BODYPART_” term. A similar transformation is applied to tumour terms 

(e.g. mass, lesion → _TUMOUR_) and to terms/phrases implying invasion (e.g. 

involves, extends into → _INVADE_). Each transformed sentence is then input to a 

common 2-level SVM classifier as described above. For sentences classified as 

positive by the 2-level SVM, a rule-based post-processing step examines the 

untransformed version of the sentence to discover the particular body part that is 

undergoing invasion by the primary tumour. 

 

Due to lack of positive examples in development data set, the SEPN (defined in 

Table 3) was implemented as a rule-based classifier that searches for phrases 

implying the existence of secondary tumour deposits in the same lobe. Similarly, the 

NONM searches for blanket statements commonly used by reporting pathologists to 

indicate that no lymph nodes are involved by the cancer. A positive finding from this 

classifier overrides the other N stage factor decisions. 

 
Classifier Short 

Name 

Stage 

Association 

Classifier Type 
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Max. tumour dimension ≤ or > 3cm TS T2 2-level SVM 

Visceral pleural invasion VP T2 Invasion SVM* 

Main bronchus invasion MB T2 Invasion SVM* 

Chest wall invasion CW T3 Invasion SVM* 

Diaphragm invasion DIA T3 Invasion SVM* 

Mediastinal pleural invasion MEDP T3 Invasion SVM* 

Parietal pericardium invasion PPER T3 Invasion SVM* 

Great vessel invasion GV T4 Invasion SVM* 

Mediastinum/heart/trachea/oesophagus/ 

visceral pericardium invasion 

T41 T4 Invasion SVM* 

Vertebral body/carina/vagus nerve invasion T42 T4 Invasion SVM* 

Separate tumour nodules in same lobe SEPN T4 Key-phrase 

No nodal involvement NONM N0 Key-phrase 

Peribronchial lymph node involvement PLN N1 2-level SVM 

Hilar lymph node involvement HLN N1 2-level SVM 

Mediastinal lymph node involvement MLN N2 2-level SVM 

Subcarinal lymph node involvement SCLN N2 2-level SVM 

Table 3: List of sentence level classifiers used in the proposed system (* indicates common 2-level SVM 
classifier with post-processing to determine factor) 

B System Development 

1) Development Corpus 
To train and validate the system, a corpus of de-identified medical reports with 

corresponding pathological staging data was obtained following research ethics 

approval. The pathological staging data was obtained from a database [1] collected 

over the five year period ending in December 2005. The corresponding medical 

reports were extracted from a pathology information system. A total of 8 cases from 

the available data sources had pathological stages of T0, TX, Tis, or N3. Automatic 

classifiers for these stages were therefore not implemented and cases with those 
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stages were omitted from the corpus. The development corpus statistics are included 

in Table 4. 

 
Data Cases Stage Breakdown Reports 

T1 204 NX 57 

T2 405 N0 432 

T3 52 N1 149 
Pathology reports + pTNM 710 

T4 49 N2 72 

817 

Table 4: Key statistics for the development data set 

Training sets for the report relevance classifiers described in Section III.A2) were 

derived from the development corpus by annotating each of the reports with a 

relevant/irrelevant label for both T and N staging. 

  

A separate training set was derived from the development corpus for each of the 

sentence level factor classifiers described in Section III.A3) by splitting all reports 

into individual sentences, filtering out irrelevant sentences using the keyword filter 

for that classifier, and then annotating remaining sentences with one of three labels 

(irrelevant, -ve finding, +ve finding). Note that direct classification of NX was not 

done as this result was derived from the N report relevance classifier output. 

2) SVM Implementation 
The bag-of-words term weights used for text representation with all SVMs 

throughout the baseline and proposed systems were calculated according to the LTC-

weighting scheme [51]. The LTC weighting is commonly used in state-of-the-art text 

categorisation systems, as it effectively de-emphasises common terms (occurring 

often in many documents), produces normalised weights across different length 

documents, and reduces the impact of large differences in frequency through use of 

the logarithm. 
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A common training strategy was used with all SVM-based classifiers. A cross-

validation approach was used to optimise SVM training parameters and decision 

threshold and to obtain unbiased classifier output over the entire development 

training set. The SVMlight [52] toolkit was used for all SVM training and testing. The 

optimal parameters discovered through cross-validation were used to train a final 

classifier on all training data. Decision thresholds were selected by cross validation to 

equalise sensitivity and specificity. No attempt was made to adjust individual 

classifier decision thresholds to optimise the global T and N staging accuracy. 

3) Development Results 
Unbiased classifier outputs from the report relevance classifiers and the sentence 

level staging factor classifiers described above were merged to obtain final T and N 

staging results on the 710-case development set. For T staging, 77.6% correct (95% 

CI = 74.3-80.6)1 was obtained for classifying the 5 T stages (TX, T1-T4). For N 

staging, 81.8% correct (95% CI=78.8-84.6) was obtained for classifying 4 N stages 

(NX, N0-N2).  

To compare the sentence-level classification with the previous direct report-level 

approach, a multi-class SVM system was used as a baseline.  This approach directly 

classifies T and N stage from a concatenation of reports for each patient, with the 

multi-class classification implemented as a hierarchy of binary SVMs, and is fully 

described in [14].   As TX and NX classes were not considered in [14] , to allow 

direct comparison of results, the baseline system was augmented with the T and N 

report relevance classification stage from the current proposed system.   On the same 

710-case development set, baseline system performance was 62.8% (95% CI=59.1-

66.4) and 77.0% (95% CI=73.7-80.1) correct for T and N staging respectively.  This 

was used as the baseline system in the trial evaluation reported in Section IV. 

                                                 
1 All 95% confidence intervals reported in this article are calculated using the Wilson procedure. 
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These development results indicate that accuracy has been improved by 

decomposition into sentence-level staging factor classifiers, as opposed to the more 

conventional document-level approach that directly classifies final T and N stages. 

IV. STATUS REPORT 
To evaluate the reliability of the proposed system, a trial was conducted, as described in the 

following sections.  Some findings from this trial were presented in preliminary form in [54]. 

A Trial Objectives 
1. To study the level of agreement in expert staging decisions. Subjectivity in the stage 

decision may arise from inconclusive examinations, varying interpretations of 

staging criteria, or ambiguity in the way the results are communicated.  The first 

objective of the trial was to quantify the degree of variability between two 

independent human experts.    

2. To evaluate the performance of automatic staging decisions.  The second purpose of 

the trial was to evaluate the performance of the automatic cancer stage assignment, 

in comparison to a ‘gold standard’ based on the same input information.  For this 

purpose the ‘gold standard’ consisted of stage independently assigned in perfect 

agreement between two human experts.  For the few cases where human experts 

disagreed, one expert’s decision was selected at random as the gold standard. 

3. To evaluate the reliability of classifying key stage factors.  Finally, in addition to 

overall T and N stage assignments, we evaluated how well the system classified 

specific factors based on key sentences in relation to the human experts. 

B Method 

1) Input Data 
The trial data set consisted of pathology reports for lung cancer cases that were not 

seen during the development phase, and was extracted from the same pathology 

information system as the development data set. The trial set consisted of reports for 
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116 cases that had been assigned a formal pathologic stage in the eight month period 

subsequent to December 2005, along with 63 unstaged cases that had a report 

describing examination of a lung or lobe from a pneumonectomy or lobectomy 

procedure. 

2) Output Data 
Two expert pathologists competent in lung cancer staging were presented with the 

de-identified reports for the 179 patients.  They then independently classified the 

TNM stage and specific factors (from Table 3) for each patient, and entered the data 

into an electronic form.   Form validation required the pathologists to enter T and N 

stages, however default values were set for all other data fields (M stage of “MX”, 

and “negative” for all other details).  A text box was also provided on the form to 

allow any free-text comments to be entered.   

In order to determine the ‘gold standard’ TNM stage for system evaluation, following 

independent data collection from the pathologists, a meeting was convened to discuss 

cases where the experts differed in the assigned TNM stage.  In this meeting, a 

consensus TNM stage was assigned by the experts for as many cases as possible.  If 

consensus was not reached for a case, due to ambiguity in the report language or 

staging guidelines, the two different TNM stages were retained. 

System output consisted of the T and N stage, along with the output of the detail 

classifiers from Table 3.  To preclude bias, processing of the trial data was performed 

by technicians independent of the development team investigators, so that 

investigators were blind to the trial data set.    

3) Performance Measures 
The following defines the measures used to evaluate results based on the total Number 

of patients (N), along with counts of True Positives (TP), True Negatives (TN), False 

Positives (FP) and False Negatives (FN) resulting from classification decisions.   To 
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evaluate the overall performance of the system for T and N staging, multi-class 

classification performance is measured using the accuracy,  

N

TP
Acc =  

Agreement between human experts was measured by the kappa statistic, which takes 

account of agreement occurring by chance.   

)(1
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is the agreement expected by chance, where )(1 cN  is the number of times 

annotator 1 selected class c. Binary classification performance is measured using the 

sensitivity and specificity. 
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The confusion matrix is a 2-dimensional tabulation of frequency counts according to 

assigned (test) class labels and actual (gold standard) class labels. By highlighting 

commonly occurring class confusions, the confusion matrix is a useful tool for 

analysing multi-class classification systems. 

C Results 

1) Expert Agreement 
The inter-expert agreement is shown in Table 5 in terms of the kappa statistic and 

raw percentage agreement for T and N staging on the complete 179-case trial data 

set. The break-down of cases by stage is demonstrated in the confusion matrix in 

Table 6.   

Stage Kappa % Agreement (95% CI) 
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T 0.83 89.9 (84.3-93.8) 

N 0.96 97.8 (94.0-99.3) 

Table 5: Inter-expert agreement for T and N staging. 

  Expert 2 

  T1 T2 T3 T4 

T1 49 0 2 0 

T2 1 94 3 2 

T3 0 3 7 2 

E
xp

er
t 1

 

T4 0 5 0 11 
 

  Expert 2 

  NX N0 N1 N2 

NX 16 1 0 0 

N0 0 107 1 2 

N1 0 0 35 0 

E
xp

er
t 1

 

N2 0 0 0 17 
 

Table 6: Confusion matrices comparing T and N stage assigned by Experts 1 and 2. 

The confusion matrices show there were 18 T stage and 4 N stage disagreements 

between the experts.  In the subsequent meeting to determine gold standard stage 

data for system evaluation, as described in Section IV.B2), the experts were able to 

reach consensus for 10 of the 18 T stage cases and all 4 of the N stage cases.  Two 

different T stage assignments were retained for the remaining 8 cases. 

 

The inter-expert agreement for each of the detailed staging factors is shown in Table 

7.  A Kappa value of N/A (Not Applicable) indicates no instances found by experts 

(division by zero). Numbers for advanced T stage factors were small, so the 

significance of results for these factors is not clear.   

 
  Expert 1 vs Expert 2  

  Agree Disagree  

Stage Classifier YY NN YN NY Kappa 

T TS 96 80 1 2 0.97 

 VP 63 109 2 5 0.92 

 MB 0 173 6 0 0.00 

 CW 5 171 2 1 0.76 
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 DIA 0 179 0 0 N/A 

 MEDP 0 176 3 0 0.00 

 PPER 0 178 0 1 0.00 

 GV 0 179 0 0 N/A 

 T41 2 170 1 6 0.35 

 T42 0 179 0 0 N/A 

 SEPN 8 161 5 5 0.59 

N NONM 76 71 19 13 0.64 

 PLN 27 146 6 0 0.88 

 HLN 23 150 2 4 0.87 

 MLN 12 165 2 0 0.92 

 SCLN 6 172 1 0 0.92 

Table 7: Inter-expert agreement for detailed staging factors (see Table 3 for classifier name definitions). 

2) System Performance 
Performance was evaluated against the ‘gold standard’ of human expert stage 

assignments.  As described above, the experts reached consensus on the T stage in 

only 171 cases.  N stage consensus was attained for all 179 cases.  For each of the 

remaining 8 cases without T stage consensus, one of the expert stage decisions was 

selected at random as the gold standard.  Overall T and N stage accuracy with respect 

to the expert staging for a baseline system that classifies the stage directly from the 

concatenated reports for each patient, as described in Section III.B3), as well as for 

the proposed CSIS is shown in Table 8.  The break-down of cases by stage is 

demonstrated in the confusion matrix in Table 9.   

 
  Accuracy % (95% CI) 

Stage Cases Baseline Proposed 

T 179 62.6 (55.0-69.6) 74.3 (67.1-80.4) 

N 179 76.5 (69.5-82.4) 86.6 (80.5-91.1) 

Table 8: Accuracy of system with respect to experts for T and N stage. 
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  System 

  T1 T2 T3 T4 

T1 39 10 0 1 

T2 6 80 2 13 

T3 0 7 2 1 

E
xp

er
ts

 

T4 1 5 0 12 
 

  System 

  NX N0 N1 N2 

NX 10 6 1 0 

N0 2 105 0 1 

N1 0 8 27 1 E
xp

er
ts

 

N2 0 3 2 13 
 

Table 9: Confusion matrix comparing T and N stage assigned by Experts and the proposed System2. 

The performance of CSIS on cases with perfect expert agreement3 for each of the 

detailed staging factors in terms of sensitivity, specificity, accuracy and kappa 

statistic is shown in Table 10.  Again, the significance of results for advanced T 

factors is not clear due to low numbers of positive examples. 

  Experts vs System     

  Agree Disagree     

Stage Classifier YY NN YN NY Sens. Spec. Acc. Kappa 

T TS 93 67 3 13 0.97 0.84 0.91 0.81 

 VP 55 96 8 13 0.87 0.88 0.88 0.74 

 MB 0 171 0 2 1.00 0.99 0.99 0.00 

 CW 3 170 2 1 0.60 0.99 0.98 0.66 

 DIA 0 179 0 0 1.00 1.00 1.00 N/A 

 MEDP 0 176 0 0 1.00 1.00 1.00 N/A 

 PPER 0 178 0 0 1.00 1.00 1.00 N/A 

 GV 0 178 0 1 1.00 0.99 0.99 0.00 

 T41 0 170 2 0 0.00 1.00 0.99 0.00 

 T42 0 179 0 0 1.00 1.00 1.00 N/A 

 SEPN 5 148 3 13 0.62 0.92 0.91 0.34 

N NONM 61 67 15 4 0.80 0.94 0.87 0.74 

 PLN 23 141 4 5 0.85 0.97 0.95 0.81 

                                                 
2 As there were no gold-standard cases, TX results are not reported, however that the system was successful in 
not inserting any false positive TX cases. 
3 It was not feasible to resolve disagreements on detailed staging factors in the post-trial consensus meeting. 
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 HLN 20 143 3 7 0.87 0.95 0.94 0.77 

 MLN 9 162 3 3 0.75 0.98 0.97 0.73 

 SCLN 5 171 1 1 0.83 0.99 0.99 0.83 

Table 10: Performance of system for classifying detailed staging factors. 

 
A final point regarding system performance is the incurred processing time.  For each 

report, on a single processor 3 GHz Pentium-4 PC, the report-level baseline system 

required 1.14 seconds, while the sentence-level proposed system required 1.20 

seconds.  In both cases, the major component was the text pre-processing stage which 

required approximately 1 second.   

V. DISCUSSION 

A Trial Objectives. 

1. To study the level of agreement in expert staging decisions. 

The comparison between the stage assigned by the two experts shows that there is a degree 

of subjectivity in determining a patient's T and N stage based purely on the available 

pathology reports, particularly for the T stage decision.  Following initial coding, there 

were 18 disagreements between Experts 1 and 2 for T staging on the full 179 patient set, 

and 4 disagreements for N staging. The confusion matrices in Table 6 show that the most 

common confusions were between T2 and T3, and T2 and T4.  These findings broadly 

correspond with agreement levels found in reviews of registry data [4], [5], [6], [7]. 

Following discussion between the two experts, consensus was reached on 10 of these T 

stages, and all 4 N stages.  The 10 original T stage disagreements were attributed to 6 

reports with ambiguous language and 4 interpretation errors.  The 4 original N stage 

disagreements were attributed to 2 data entry errors, 1 interpretation error, and 1 report 

with ambiguous language.  The remaining 8 T stage decisions on which no consensus 

could be reached consisted of 4 cases where the staging guidelines are ill-defined for 

distinguishing a single primary tumour from multi-focal tumours (leading to T2M1 and 
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T4M0 stage confusion, which are however both Group Stage IV), and 4 cases where the 

report was imprecise regarding tumour extent (leading to T2/T3 confusion).   

2. To evaluate the reliability of automatic staging decisions. 

CSIS had T stage accuracy of 74% and N stage accuracy of 87% on the trial data.  This 

represents an improvement of approximately 10% over the previous baseline system for 

both T and N staging.  These results are similar to those observed on the development data 

set (Section III.B3).  In general, higher accuracy for N stage as compared with T stage 

mirrors the trend observed in the expert disagreements, and the CSIS confusions 

predominantly occurred between the same advanced T stages as for the human experts.    

3. To evaluate the reliability of classifying key stage factors. 

The results in Table 10 show that agreement between CSIS and the experts for individual 

key stage factors also follows the same patterns observed between human experts in Table 

7. The sentence-level factor classifier results in Table 10 explain the reasons for CSIS 

stage errors. Confusion between T1 and T2 cases (observed in Table 9), is due to both false 

positive findings for the Tumour Size (TS) classifier, and the imperfect sensitivity and 

specificity of the Visceral Pleural Invasion (VPI) classifier.  Erroneous T3 and T4 stage 

classifications are mostly due to the Chest Wall Invasion (CW) and the SEPN (Separate 

Tumour Nodules in Same Lobe) classifiers.  The lower performance for those factors is 

consistent with both their rarity and the subjectivity seen in the corresponding expert 

decisions, as shown in Table 7. 

Higher accuracy for N stage sentence-level factor results are likely to reflect the higher 

prevalence of N stage factors than T stage factors in the reports, however there is  

substantial agreement between the automatic classifiers and the experts for all N stage 

factors.  As seen in the confusion matrix in Table 9, most of the system-level N stage 

errors are false positive findings of N0.  These result from false negative findings from the 
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lymph node involvement classifiers (HLN, PLN, MLN and SLN) coupled with false 

positives from the NONM classifier. 

B Other Considerations and Limitations 
CSIS has been developed and evaluated for T and N staging of lung cancer based on 

reports from pathological studies of the lung, as proof-of-concept to determine the 

potential accuracy of an automatic system.  There are several issues to be addressed for the 

system to be generalised to other cancers, or to process other input modalities before 

deployment in practice.   

The current system was developed on a specific data set and there is a risk that over-fitting 

may limit broader application.  Using more complex Natural Language Processing, richer 

medical terminologies (SNOMED CT, MetaMap), as well as larger and more varied 

training data sets may improve the generalisation and portability of classifiers to new 

cancers or reporting modalities.   

A practical consideration is the expert time required for training SVM classifiers during 

system development.  This involves annotation of sentences for each staging factor, which 

was done manually by the development team in the current system.  It is estimated that the 

present lung cancer system involved up to 40 hours of annotation work during 

development.  While this is not negligible, it must only be done once for each new cancer 

type, and is therefore not a major concern given eventual productivity gains from 

automatic stage data collection.  Ongoing research is investigating methods for reducing 

annotation work in several ways, such as by identifying reusable classifiers across different 

cancers (e.g. tumour dimension, or the common ‘invasion’ classifier in the present system), 

analysing convergence with training set size, and using active learning.   

Another practical consideration is the need to automatically discard irrelevant reports.  The 

report relevance stage in the current system discards reports with no information for T or N 

staging, leading to TX or NX classifications.   The system however assumes the input 
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reports do relate to lung cancer.  This has been achieved in the development and trial data 

sets by filtering on report metadata (e.g. disease codes, examination type) from the source 

databases, however a practical system may require a more general report filtering stage.    

Much analysis of cancer outcomes is based on the higher level group stage, rather than the 

TNM stage.  Because CSIS was developed on pathology reports and M staging is usually 

determined clinically or by medical imaging, M staging was omitted and CSIS therefore 

cannot output a proper group stage.  Some indication of potential group stage accuracy can 

be given by assuming a known M stage. For all M0 cases with expert agreement on group 

stage from the trial, the present system attains an accuracy of 76.7% across Stages I-III 

(163 cases, Stage IV could not be assessed as it is defined as M1 with any T and N). Future 

work will investigate adaptability to using additional input sources, e.g. radiology or non-

lung pathology reports, to determine M stage.   

VI. CONCLUSIONS 
We developed a prototype software system to automatically determine a patient's cancer stage 

from medical reports of lung cancer patients.  The system uses Support Vector Machine 

classification techniques to classify a range of detailed staging factors at the sentence-level, 

and then combines these into a global stage decision.  CSIS was compared against direct 

report-level classification and against staging by two independent pathology experts.  The 

following conclusions can be made: 

1. There is a significant level of disagreement in stage assigned by independent human 

experts based on pathology reports, particularly for T staging.  

2. In comparison with human experts, CSIS achieved overall accuracy of 74% for T 

staging and 87% for N staging. 

3. The two-level sentence classification approach improves on previous direct report-

level stage classification by approximately 10% for both T and N staging. 

4. The CSIS error pattern mirrors that observed between two independent experts.  
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The level of accuracy required for practical deployment of such a system would necessarily 

depend on the use case, and whether it involved a step of human validation. The results 

achieved do however lie within bounds of human staging accuracy observed in studies of 

registry data [4][5][6][7].  A productive avenue of research may be to improve the sensitivity 

of the N stage detail classifiers through more sophisticated natural language processing 

techniques.  The limitations with the T staging system mostly reflect uncertainty in the report 

language, as well as the fact that the stage protocols do not cater for every contingency for 

more advanced cancer cases, thus leading to subjective interpretations.  As well as 

investigating new classification strategies to improve sensitivity of detail classifiers, ongoing 

work will focus on addressing these issues for practical deployment of the technology.   
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