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Abstract— Multi-class machine learning techniques using
support vector machines (SVM) are proposed to classify the
TNM stage of lung cancer patients from analysis of their free-
text histology reports. Stages obtained automatically can be
used for retrospective population-level studies of lung cancer
outcomes. While the system could in principle be applied to
stage different cancer types, the paper focuses on staging lung
cancer due to data availability. Experiments have quantified
system performance on a corpus of reports from 710 lung
cancer patients using four different SVM architectures for
multi-class classification. Results show that a system based on
standard binary SVM classifiers organised in a hierarchical
architecture show the most promise with overall accuracy
results of 0.64 and 0.82 across T and N stages, respectively.

I. INTRODUCTION

The TNM cancer staging system is increasingly being rec-
ommended as a standard of care by national cancer bodies,
e.g. [1]. The preferred mechanism for the TNM staging of
lung cancer patients is through a multi-disciplinary team
(MDT) conference, which requires input from specialists
(e.g. radiology, pathology, etc), and are therefore extremely
resource intensive and infeasible in regional areas where
local expertise is limited. As a result, formal stage data is
not collected for all cancer patients.

Preliminary research towards a decision support system
for staging lung cancer patients based on free-text histology
reports posed this as a text categorisation problem [2], [3].
A state-of-the-art approach for this is to derive a vector
space model document representation and then classify each
category using a binary (‘one-versus-rest’) Support Vector
Machine (SVM). An initial system was developed applying
binary SVM’s to classify each stage category (e.g. T1 versus
not-T1) – see [2], [3] for a problem description, literature
review and experiments. While promising results were ob-
tained, such a system does not necessarily assign a single
stage value within each T and N grouping1, but rather zero
or more. This is a clear limitation as the cancer stage decision
is inherently a multi-class problem.

A natural extension of SVM’s for multi-class classifica-
tion is the use of multiple binary classifiers which can be
collectively combined in some way to yield a multi-class
decision [4], [5], [6], [7]. Some common approaches include
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comparing each class to all others, and all pairs of classes to
each other. Direct methods for training multi-class predictors
have also been proposed [6], [8], [9].

This paper addresses the multi-class problem by investigat-
ing the performance of four different SVM architectures for
multi-class classification with experimental results reported
on a corpus of free-text reports from 710 lung cancer
patients.

II. DESCRIPTION OF SYSTEM

The proposed system consists of two stages: text pre-
processing to standardise report texts, followed by the assign-
ment of the cancer stage via the extraction and classification
of features from the report text using SVM-based multi-class
classification techniques.

A. Text Pre-processing

The text pre-processing steps implemented in this paper
is the same as that described in [3]. For each patient, the
input to the system consists of concatenated unstructured
text from available histology reports. The steps taken to
process the input report text include (1) normalisation, which
reduces the basic variations between reports by enforcing
consistent expression of common terms, (2) detection of
negation phrases, which detects common medical negation
phrases in the text, (3) conversion to UMLS base forms,
which converts each word in the text document into its
Unified Medical Language System (UMLS) SPECIALIST
Lexicon [10] base form, (4) parsing into UMLS term codes,
which converts each base form word into a sequence of more
general (i.e. potentially multi-word) UMLS alphanumeric
codes, and (5) negating relevant UMLS terms, which applies
the negation phrases from Step 2 to surrounding UMLS terms
that were considered relevant to the TNM lung cancer staging
protocol.

B. Assignment of Cancer Stage

The next step in the system is to classify the cancer stage
from the pre-processed text using SVM’s. A vector space
model was used to represent each text document in the data
corpus as a vector of term weights Dk = (aik) (where aik

is the weight of term i in document k). The LTC-weighting
scheme as used previously in [3] is again used in this paper.

Four selected SVM-based multi-class classifier architec-
tures (see Fig. 1) will be described in the following section
and used in experiments to output a cancer stage deci-
sion. The SVM’s were implemented using the SVMlight

toolkit [11], unless otherwise stated.



(a) (b) (c) (d)

Fig. 1. SVM architectures for multi-class classification, (a) maximum normalised score, (b) hierarchy of binary SVM’s, (c) multi-class SVM, and (d)
Multi-class SVM on binary SVM outputs.

Maximum normalised score. Binary SVM’s output a
score indicating the distance of a test example from the
decision hyper-plane. These scores are from a classifier-
specific distribution and do not directly compare across
different SVM’s. A sigmoid function fitted to the SVM scores
from a development test set [12] was used to normalise the
binary SVM scores. The use of the sigmoid function was
motivated from empirical observations of real SVM score
distributions. By normalising the SVM output scores, a single
stage category can be assigned according to the SVM with
the highest normalised score.

Hierarchy of binary SVM’s. There may be benefit in
a hierarchical approach which decomposes the stage clas-
sification into a series of sub-decisions (e.g. [7]). With this
approach, each classifier performs a pre-defined classification
subtask. For example, to classify a T stage (T[1-4]), three
binary classifiers need to be trained, say T1 vs. T2/T3/T4,
T2 vs. T3/T4, and T3 vs. T4. Permutations of the individ-
ual classifiers can be trained to determine the hierarchical
structure which best discriminates between the classes.

Multi-class SVM. Multi-class SVM algorithms (e.g. [9])
allow the training of an SVM that does multi-class classifica-
tion directly. All classes are considered at the same time, and
the separating hyper-plane conditions are integrated into a
single optimisation problem. The complexity of this approach
has variables proportional to the number of categories, and in
general, it is computationally more expensive than multiple
binary classifiers that use the same amount of data [6]. The
SVMmulticlass toolkit [13] was used to train multi-class
SVM’s.

Multi-class SVM on binary SVM outputs. This method
uses the binary SVM output scores as inputs to a subsequent
Multi-class SVM. The use of both un-normalised and nor-
malised binary SVM scores were considered. Input vectors
consisting of a concatenation of both types of scores were
found experimentally to yield the best performance.

TABLE I
KEY STATISTICS FOR THE EXPERIMENTAL DATA SET.

Stage Data Cases Reports
T1, T2, T3, T4 Histology + TNM 710 817
N0, N1, N2 Histology + TNM 651 756

III. EXPERIMENTAL EVALUATION

A. Data Corpus

To train and validate the system, a corpus of de-identified
medical reports with corresponding staging data was ob-
tained for 718 lung cancer patients following research ethics
approval. The corpus was compiled from two separate data
sources: a database of pathologic staging decisions (TNM)
for lung cancer patients (Queensland Integrated Lung Cancer
Outcomes Project data [14]) for use as the gold standard for
the classifier training and testing, and a set of histology re-
ports for lung cancer patients extracted from the Queensland
Health Pathology Information System (AUSLAB). Only a
single histology report was retrieved for most patients.

Only a few T0 (representing patients who did not actually
have any tumour) and no N3 (surgical resection is rarely
conducted for such cases) cases were present in the source
data and so these categories were removed from the exper-
iments. The system also does not classify the TX and NX
stage categories. In practice, relevance classifiers can be used
to first classify these stages where insufficient information is
available for T and N staging. Table I summarises the key
statistics for this experimental data set.

B. SVM Training and Testing

The SVM classifiers in the following experiments use
a linear kernel with parameters estimated from a training
corpus of text reports supplemented with stage (ground
truth) data. In experiments not reported here, it was found
that different SVM kernel functions (e.g. linear, polynomial,
RBF) had negligible effect on the task at hand.

In order to maximise the amount of SVM training data
while still reporting significant results on this limited sized



data set, cross-validation using 100 folds, similar to that used
in [3], was applied. Within the training subsets, further cross-
validation using 10 folds was used to optimise SVM training
hyper-parameters. These optimal parameters were used to
train a final classifier on the training data subsets and then
results were generated on the test subset. As such, over the
100 folds, unbiased results were able to be reported on the
full patient list.

C. Performance Measures

The measure of system performance for multi-class classi-
fiers is commonly given by accuracy, which is the proportion
of correct classifications across all categories and patients.
System performance at a per-class level, however, is reported
as recall, which is the proportion of categories that were
correctly assigned by the classifier (true positives / (true
positives + false negatives)). In general, the overall accuracy
results tend to be dominated by classifier performance on the
most common categories.

A confusion matrix can also be used to highlight com-
monly occurring class confusions. It is a two-dimensional
table of frequency counts according to classified (test) class
labels and actual (gold standard) class labels. For a perfect
classifier, all off-diagonal entries should be zero. This is a
useful tool for analysing multi-class classification systems.

Mutual information (MI) can also be derived from a nor-
malised confusion matrix (where all entries sum to 1) to mea-
sure the reduction in uncertainty about the ground truth due
to the knowledge of the classifier output [15], [16], as given
by MI(y; t) =

∑
y

∑
t P (y, t)log2(P (y, t)/(P (y)P (t))),

where P (y, t) is the joint probability distribution function
of the classifier output, y, and the ground truth, t, and P (y)
and P (t) are the marginal probability distribution functions
of the classifier output and ground truth, respectively. Note
that P (y, t)log2(·) is defined as 0 if P (y, t) = 0. If there is no
dependence between the classifier output and ground truth,
then the two are statistically independent and by definition
their MI is zero. If, on the other hand, the classifier output
and ground truth were strongly related, then the value of MI
would be relatively high. The magnitude of MI can thus be
used to compare different classification systems that use the
same data. An evaluation of commonly used metrics in [16]
cautioned the use of accuracy, precision, recall and F-score
when comparing classifiers as they can be misleading and
inconsistent with our intuition about the characteristics of
a good classifier. On the contrary, mutual information was
shown to better correlate with intuition and able to rank
classifiers according to how informative their output was.

IV. RESULTS AND DISCUSSION

The T and N staging recall and overall accuracy results
for each multi-class method are shown in Table II. In terms
of overall system performance, the accuracy results were
as high as 0.65 and 0.82 across the T and N categories
respectively, which is promising for these initial multi-class
experiments. The lower T result, reflect the higher degree of
subjectivity and thus difficulty with T staging, as revealed in

TABLE III
CONFUSION MATRICES FOR THE HIERARCHICAL SVM CLASSIFIER.

System Output
T1 T2 T3 T4 Σ

T1 107 94 1 2 204
Ground T2 93 284 9 19 405
Truth T3 1 10 38 3 52

T4 5 13 5 26 49
Σ 206 401 53 50 710

System Output
N0 N1 N2 Σ

N0 394 32 4 430Ground
N1 35 91 23 149Truth
N2 4 20 48 72
Σ 433 143 75 651

a concurrent trial involving two clinical experts. It should be
noted that although the accuracy results for all multi-class
systems are comparable, the result can be misleading due to
the dominance of the most common categories.

Mutual information, on the other hand, shows that for both
the T and N categories, the Hierarchical SVM method is the
best classifier in terms of having the most mutual information
between the classifier output and ground truth. That is the
method has the least uncertainty about the ground truth given
knowledge about the classifier output. A closer inspection of
the results at a per-class level reveals that this is indeed the
case:

1) Maximum normalised score and both Multi-class SVM
methods tend to favour one classifier output over
others.

2) Multi-class SVM methods are not significantly better
than simpler methods that use binary SVM’s. While
Multi-class SVM on binary SVM’s performs best (or
close to best) in terms of accuracy, the method is not
significantly better than the Hierarchical SVM method
when compared at a per-class level.

3) Hierarchical SVM’s show promising results both at an
overall system level and even more so at a per-class
level. It is superior to every other method on all per-
class categories except for the most common category.

Given that the Hierarchical SVM method uses binary
SVM’s, which results in lower computational complexity
than methods using Multi-class SVM’s, and that they have
the potential flexibility of optimising their decision point at
each level of the hierarchy (via the use of thresholds on
SVM scores), the method shows the most promise in terms
of performance, flexibility and simplicity.

The corresponding confusion matrices for the Hierarchical
SVM classifiers showing the break-down of cases by stage
are shown in Table III. The confusion matrices show that
the most common confusions are between T1 and T2 (187
cases), and T2 and T4 (32 cases). As for the N stage
confusion matrix, most of the N stage errors are either false
positive (52 cases) or false negative (58 cases) findings of
N1.



TABLE II
MULTI-CLASS CLASSIFIER RECALL, ACCURACY AND MUTUAL INFORMATION RESULTS.

Positive Max Norm Multi-class Multi-class SVMStage
Cases Score

Hierarchicala
SVM on Binary SVMsb

T T1 204 0.397 0.525 0.485 0.338
T2 405 0.852 0.701 0.765 0.857
T3 52 0.288 0.731 0.538 0.635
T4 49 0.224 0.531 0.163 0.265

Overall Accuracy 710 0.637 0.641 0.627 0.651
Mutual Information 0.123 0.240 0.153 0.183

N N0 430 0.958 0.916 0.963 0.960
N1 149 0.517 0.611 0.544 0.503
N2 72 0.486 0.667 0.458 0.569

Overall Accuracy 651 0.806 0.819 0.811 0.813
Mutual Information 0.295 0.344 0.297 0.325

aT stage configuration: T3 vs T1/T2/T4, T1 vs T2/T4 and T2 vs T4; N stage configuration: N2 vs N0/N1 and N0 vs N1.
bBoth normalised and un-normalised SVM scores were concatenated to form the SVMmulticlass input.

V. FUTURE WORK

The work discussed in this paper is based on classifying
cancer stages from a vector space model representation
of patient text reports. The results show that there are
obvious class confusions, but it is difficult to determine the
reasons for the confusions, thus limiting the utility of the
cancer staging tool. For this reason, there may be benefit
in indirectly classifying staging factors first at a sentence-
level, and then merging the staging factor results using the
staging guidelines. That is, individual observations within
reports that are relevant to staging are detected, e.g. “primary
tumour greater than 3cm in extent”. It is envisaged that not
only improved performances may result, but also the system
will be of greater utility as a tool for retrospective collection
of population stage data since it provides the utility for
the analysis, extraction and linking of key information from
medical reports.

VI. CONCLUSION

Progress towards a system to assist in the collection of
staging data for lung cancer patients has been presented.
Four multi-class SVM-based classifiers were evaluated. Re-
sults show that a system based on standard binary SVM
classifiers organised in a hierarchical architecture shows the
most promise in our context. The method achieves overall
accuracy results of 0.64 and 0.82 across T and N stages
respectively for pathologic staging based on histology report
text. While this is an interesting initial result, there is
much scope to improve the system to incorporate specific
knowledge of the staging protocol and practices.
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